Data: Long-Term Supportability

NDIA 1st Annual
Systems Engineering and Supportability Workshop
September 15-17, 1998
San Diego, California

Carol J. Gutierrez
Principal Systems Engineer
email: gutierr@alc.com

Ascent Logic Corporation San Jose, California 95134

Agenda

- Why Should A Program Manager Worry About Data and Tools to Store It Anyway?
 - What is Data?
 - What is Information?
 - From Data to Information...
- As You Plan, Consider
 - Example of Data and Information Needed for EIA 632 Requirements Management
 - Life Cycle Example for Process Enabler Tools and Interfaces
- Conclusions and Recommendations

What is Data? What is Information?

<u>Data</u>

The raw materials from which information is developed

EXAMPLE:

- A single "SHALL" statement
- A test result
- A specification change page

Information

■ Data that has been transformed into a meaningful form for the user (customer, recipient)

EXAMPLE:

- A specification with many "SHALL" statements
- A test report
- An impact analysis of the results of a change

Data to One is... Information for Another

Program Managers Need Quality Data and Enabling Tools to...

- Develop appropriate information at the right time to help manage (minimize, mitigate) risk
- Build cooperation (trust) to get the job done more efficiently and effectively
 - Customers
 - Users
 - Team members
- Understand
 - Impacts to changes in requirements
 - Decisions, issues, and rationale

To Move from Data to Information...

- Plan the Program's Process Needs
- Determine Basic Data Requirements
- Identify Information Products to meet Programmatic Goals
 - Define Characteristics of Information Products
 - Define Quality Requirements of Information Products
- **Define "Information Manufacturing System"**
 - Identify Tools Required to Store Data
 - Identify Software Needed to Produce Information Products

What is this Concept of Total Data Quality Management?

- Quality data is fit for use? concept of data quality is relative and depends on the receiver of the data and information
- Make data and information meet the "fit for use criteria" which implies more than "just being accurate"

Define Quality Requirements of Information Products

- Relevancy
- Value-Added
- Timeliness
- Completeness
- Amount of data

- Interpretability
- Ease of Understanding
- Concise
- Consistent

- Believability
- Reputation
- Accessibility
 - Access
 - Security

As You Plan, Consider...

Information Databases
Importance of data re-use
The entire life cycle...
What you need to plan
Tools required

Information Databases

- A repository that provides a capacity to maintain work products and outcomes from implementation of the processes for engineering a system in a controlled manner.
 - Provides the basis for controlled maintenance of the information needed by the multidisciplinary teams and management to efficiently and effectively accomplish their assigned tasks.
- Contains the requirements, configurations of a system (past, current, and planned), and all analyses and test results.
 - Allows for traceability
 - Supports the validation and verification tasks
 - Is essential for change management
 - Provides information to support decision making
- Term "Information Database" used 40 times
- Found in 16 of 33 Requirements
- Applies throughout Life Cycle

Information Database and EIA 632 Tasks (1 of 5)

- Establish Database
 - Requirement 5: task b
- Capture Appropriate Data
 - Requirement 12: task a
- Manage Database
 - Requirement 12: task g

Disseminate Information

• Requirement 13: (implied in all tasks)

Information Database and EIA 632 Tasks (2 of 5)

- Validated System Technical Requirements
 - Requirement 16: task i
- Logical Solution Representations & Set of Validated Derived Requirements
 - Requirement 17: task f
- Design Solution Work Products (include key decisions, rationale, results of tradeoff analyses, assumptions)
 - Requirement 19: task d

Information Database and EIA 632 Tasks (3 of 5)

- **■** Effectiveness Analyses
 - Requirement 22: task f
- Outcomes of Tradeoff Analyses
 - Requirement 23: task c
- Outcomes of Risk Analyses
 - Requirement 24: task f

Information Database and EIA 632 Tasks (4 of 5)

Validation Results

- Acquirer Requirements
 - Requirement 26: task e
- Other Stakeholder Requirements
 - Requirement 27: task e
- System Technical Requirements
 - **♦** Requirement 28: task h
- Logical Solution Representations
 - Requirement 29: task g
- End Product
 - Requirement 33: task e

Information Database and EIA 632 Tasks (5 of 5)

Verification Results

- Design Solution
 - ♦ Requirement 30: task d
- Delivered End Product
 - ◆ Requirement 31: task d
- Readiness Demonstration for Enabling Products and Processes
 - Requirement 32: task d

Why Is Data Re-use So Important?

- Minimize
 - Maintenance costs
- Maximize
 - Data integrity
 - Data accuracy
- Help
 - Ensure timeliness of information delivery
 - Identify potential opportunity to reduce costs by reusing code or inventoried products

What To Do...

Identify:

- Information Products
- Tools and Environment
- Maintenance Resources

Define:

- Characteristics of Information Products
- Quality Requirements of Information Products
- "Manufacturing System" for production and maintenance of Information Products

Consider:

- Where data will be stored (what tool)
- What stored data mean in your process (semantic meaning)
- How will data be stored in the tool (schema)
- Reduce storage of redundant data
- Define data consolidation and change control process and procedures

EIA 632 Requirements Management Semantics

Process and Tool Enablers

Process Needs		Tool Selection Options						
		1	2	3	4	5	6	
Control and Manage Changes			b, c	a, c	a, c	a, c	b	
Report Status		Z	b, c	z	a, c	a, c	a, z	
Produce Deliverables		С	c, d	С	С	a, c	w	
Develop Requirements		a, c	z	d, c	d, s, c	С	С	
Develop Architecture	Logical	С	s	s, t, c	t, c	С	а	
	Physical	С	f	z	С	С	С	
	Interface	Z	С	С	С	С	z	
	Information	С	h	С	c, s	c, s	С	
Develop Design		e, f	z	С	s, h, c	С	С	
Implement Design		f	f	k	k, f	f	k	
Verify Implementation		f, g	V	٧	v, c	V	С	
TOOLS REQUIRED		a, c, e, f, g, z	b, c, d, f, h, s, v, z	a, c, d, k, s, t, v, z	a, c, d, f, h, k, s, t, v	a, c, f, s, v	a, b, c, k, w, z	

Option 5 Chosen

- Min. # of tools
- Reduced # of tools for each process step (need)
- All tools in this option have Public APIs; interfacing is easier
- Tool "c" appears to be capable of covering many of the process steps (needs); assume Tool "c" has internal integration to move from one process step to another.
- Tool "c" has CAIV solution
- Tool vendors "c" and "a" have consultants to help define software interfaces
- Tool "c" vendor has resources to help develop interfacing software

Tool Interfaces

Tool Costs (Initial + Maintenance) in \$000s

	L		ist		Maintenance		
Tool	Num.	Seat	Total	15% /yr	Dev	Ops	Projected Cost
	Seats				(Yr 2 -6)	(Yr 7-30)	(w/o Discount)
A	5	70	350	52.5	262.5	252	864.5
C-1 (re)	200	3	600	90	450	2160	3210
C-2 (rm)	40	8	320	48	240	1152	1712
C-3 (api)	45	2	90	13.5	67.5	324	481.5
C-4 (exc)	10	15	150	22.5	112.5	540	802.5
C-5 (sa)	10	19	190	28.5	142.5	681.6	1014.1
C-6 (sd)	5	50	250	37.5	187.5	900	1337.5
F	10	50	500	75	375	1800	2675
V	5	200	1000	150	750	3600	5350
S	3	50	150	22.5	112.5	108	370.5
			3600	540	2700	11517.6	17817.6

Assumes:

- 30 year Program Life; 6 year Development; 300 Engineers during Development; all Engineers and Managers need easy access to the Information Database
- Maintenance starts Year 2
- No. of seats for maintenance reduced to 1/5th after Development

Tool Interfaces Costs (in Months)

Inter- face	Туре	Tools	Develop Cost (Mo.)	Maintain Cost (Mo.)	Projected Cost (Mo.)	Projected Cost (\$000s)
IF-1	Uni (Ext)	→ C	3 x .25	360 x .01	4.35	87
IF-2	Bi (Int)	$C \longleftrightarrow F$	3 x 1.5	360 x .1	40.5	810
IF-3	Uni (Int)	$C \rightarrow Rpt$	3 x .25	360 x .01	4.35	87
IF-4	Bi (Int)	$C \leftarrow \rightarrow V$	3 x 2	360 x .1	42	840
IF-5	Uni (Int)	$F \longleftrightarrow V$	3 x 1	360 x .01	6.6	132
IF-6	Uni (Int)	$C \rightarrow Rpt$	3 x .25	360 x .01	4.35	87
IF-7	Bi (Int)	$C \longleftrightarrow A$	3 x 2.5	360 x .5	181.5	3630
IF-8	Bi (Int)	$C \longleftrightarrow S$	3 x 1.5	360 x .01	8.1	162
IF-9	Uni (Int)	$C \rightarrow Rpt$	3 x 2	360 x .5	186	3720
IF-10	Uni (Int)	$C \rightarrow Rpt$	3 x 1	360 x .5	181	3620
IF-11	Bi (Int)	$C \rightarrow Trades$	3 x .25	360 x .5	180.75	3615
			35.5	810	845.5	16910

Assumes:

- 30 year Program Life; 6 year Development
- Optimistic Software Development Schedule
- Estimated 20 days/month; \$1000/day consultant rate
- Minimal Schema changes (3 for each tool over Program Life)

Tools + Tool Interfaces Costs (Hypothetical 30 Year Program)

- Software, without Discount (\$17,818K)
 - \$3,600K Acquisition
 - \$2,700K Development Maintenance
 - \$11,518K Operational Maintenance
- Tools Interfaces (\$16,910K)
 - \$710K Development
 - \$16,200K Maintenance (Development + Operations)

- Software, with 40% Discount (\$ 10,691K)
 - \$2,160K Acquisition
 - \$1,620K Development Maintenance
 - \$6,911K Operational Maintenance
- Tools Interfaces (\$16,910K)
 - \$710K Development
 - \$16,200K Maintenance (Development + Operations)

Data and Information Re-Use

Summary: Data Quality and Information Integrity

- Need resources and planning to Establish and Maintain an Information Database
- Plan Information Product Needs for the Life Cycle
 - Data and Information are not the same
- Greater the number of tools needed to store the data, greater the chances of redundant data
 - Redundant data is a problem in data accuracy and data integrity
- Reduce number of tools needed to contain the data to support engineering process

Summary: Tools Purchase and Maintenance

- Initial tools purchase price is not the only life cycle cost
- Maintenance costs for tools mount up
 - Need to maintain bridges or other interfaces between the tools
 - **♦** Costs time and money
 - **♦** Increases possibility of data redundancy
 - Maintenance of tools interfaces is significant; special skills needed
 - **♦** Development: software
 - **♦** Administration: hardware and database
 - The more tools you have the more maintenance cost you have
 - ◆ ~10 18% of purchase price of tool, annually

Summary: Initial Skill Sets Needed

Need someone who:

- Knows your engineering process
- Can facilitate a team in actualizing your process with the tools
 - Help in teambuilding
- Knows how to define and develop the software needed to exact and formulate information from data contained in the repository
 - Provide semantic mapping help
 - Develop automated user tools
 - Help define and detail a "users guide" for the tool set
- Knows the hardware side of setting up and maintaining data repositories

